
13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 1/20

Chart.js Documentation

Everything you need to know to build great looking charts using
Chart.js

Getting started

Include Chart.js

First we need to include the Chart.js library on the page. The library occupies a global variable
of Chart .

<script src="Chart.js"></script>

Alternatively, if you're using an AMD loader for JavaScript modules, that is also supported in
the Chart.js core. Please note: the library will still occupy a global variable of Chart , even if it
detects define and define.amd . If this is a problem, you can call noConflict to restore
the global Chart variable to it's previous owner.

// Using requirejs
require(['path/to/Chartjs'], function(Chart){
 // Use Chart.js as normal here.

 // Chart.noConflict restores the Chart global variable to it's previous owner
 // The function returns what was previously Chart, allowing you to reassign.
 var Chartjs = Chart.noConflict();

});

You can also grab Chart.js using bower:

bower install Chart.js --save

Creating a chart

To create a chart, we need to instantiate the Chart class. To do this, we need to pass in the
2d context of where we want to draw the chart. Here's an example.

<canvas id="myChart" width="400" height="400"></canvas>

// Get the context of the canvas element we want to select
var ctx = document.getElementById("myChart").getContext("2d");
var myNewChart = new Chart(ctx).PolarArea(data);

We can also get the context of our canvas with jQuery. To do this, we need to get the DOM
node out of the jQuery collection, and call the getContext("2d") method on that.

// Get context with jQuery - using jQuery's .get() method.
var ctx = $("#myChart").get(0).getContext("2d");
// This will get the first returned node in the jQuery collection.
var myNewChart = new Chart(ctx);

After we've instantiated the Chart class on the canvas we want to draw on, Chart.js will handle
the scaling for retina displays.

With the Chart class set up, we can go on to create one of the charts Chart.js has available. In

Getting started

Include Chart.js

Creating a chart

Global chart configuration

Line Chart

Introduction

Example usage

Data structure

Chart options

Prototype methods

Bar Chart

Introduction

Example usage

Data structure

Chart Options

Prototype methods

Radar Chart

Introduction

Example usage

Data structure

Chart options

Prototype methods

Polar Area Chart

Introduction

Example usage

Data structure

Chart options

Prototype methods

Pie & Doughnut Charts

Introduction

Example usage

Data structure

Chart options

Prototype methods

Advanced usage

Prototype methods

External Tooltips

Writing new chart types

Extending existing chart types

Community extensions

Creating custom builds

Notes

Browser support

Bugs & issues

Contributing

License

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 2/20

the example below, we would be drawing a Polar area chart.

new Chart(ctx).PolarArea(data, options);

We call a method of the name of the chart we want to create. We pass in the data for that chart
type, and the options for that chart as parameters. Chart.js will merge the global defaults with
chart type specific defaults, then merge any options passed in as a second argument after
data.

Global chart configuration

This concept was introduced in Chart.js 1.0 to keep configuration DRY, and allow for changing
options globally across chart types, avoiding the need to specify options for each instance, or
the default for a particular chart type.

Chart.defaults.global = {
 // Boolean - Whether to animate the chart
 animation: true,

 // Number - Number of animation steps
 animationSteps: 60,

 // String - Animation easing effect
 animationEasing: "easeOutQuart",

 // Boolean - If we should show the scale at all
 showScale: true,

 // Boolean - If we want to override with a hard coded scale
 scaleOverride: false,

 // ** Required if scaleOverride is true **
 // Number - The number of steps in a hard coded scale
 scaleSteps: null,
 // Number - The value jump in the hard coded scale
 scaleStepWidth: null,
 // Number - The scale starting value
 scaleStartValue: null,

 // String - Colour of the scale line
 scaleLineColor: "rgba(0,0,0,.1)",

 // Number - Pixel width of the scale line
 scaleLineWidth: 1,

 // Boolean - Whether to show labels on the scale
 scaleShowLabels: true,

 // Interpolated JS string - can access value
 scaleLabel: "<%=value%>",

 // Boolean - Whether the scale should stick to integers, not floats even if drawing space is there
 scaleIntegersOnly: true,

 // Boolean - Whether the scale should start at zero, or an order of magnitude down from the lowest value
 scaleBeginAtZero: false,

 // String - Scale label font declaration for the scale label
 scaleFontFamily: "'Helvetica Neue', 'Helvetica', 'Arial', sans-serif",

 // Number - Scale label font size in pixels
 scaleFontSize: 12,

 // String - Scale label font weight style
 scaleFontStyle: "normal",

 // String - Scale label font colour
 scaleFontColor: "#666",

 // Boolean - whether or not the chart should be responsive and resize when the browser does.
 responsive: false,

 // Boolean - whether to maintain the starting aspect ratio or not when responsive, if set to false, will take up entire container
 maintainAspectRatio: true,

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 3/20

 // Boolean - Determines whether to draw tooltips on the canvas or not
 showTooltips: true,

 // Function - Determines whether to execute the customTooltips function instead of drawing the built in tooltips (See [Advanced - External Tooltips](#advanced-usage-custom-tooltips))
 customTooltips: false,

 // Array - Array of string names to attach tooltip events
 tooltipEvents: ["mousemove", "touchstart", "touchmove"],

 // String - Tooltip background colour
 tooltipFillColor: "rgba(0,0,0,0.8)",

 // String - Tooltip label font declaration for the scale label
 tooltipFontFamily: "'Helvetica Neue', 'Helvetica', 'Arial', sans-serif",

 // Number - Tooltip label font size in pixels
 tooltipFontSize: 14,

 // String - Tooltip font weight style
 tooltipFontStyle: "normal",

 // String - Tooltip label font colour
 tooltipFontColor: "#fff",

 // String - Tooltip title font declaration for the scale label
 tooltipTitleFontFamily: "'Helvetica Neue', 'Helvetica', 'Arial', sans-serif",

 // Number - Tooltip title font size in pixels
 tooltipTitleFontSize: 14,

 // String - Tooltip title font weight style
 tooltipTitleFontStyle: "bold",

 // String - Tooltip title font colour
 tooltipTitleFontColor: "#fff",

 // Number - pixel width of padding around tooltip text
 tooltipYPadding: 6,

 // Number - pixel width of padding around tooltip text
 tooltipXPadding: 6,

 // Number - Size of the caret on the tooltip
 tooltipCaretSize: 8,

 // Number - Pixel radius of the tooltip border
 tooltipCornerRadius: 6,

 // Number - Pixel offset from point x to tooltip edge
 tooltipXOffset: 10,

 // String - Template string for single tooltips
 tooltipTemplate: "<%if (label){%><%=label%>: <%}%><%= value %>",

 // String - Template string for multiple tooltips
 multiTooltipTemplate: "<%= value %>",

 // Function - Will fire on animation progression.
 onAnimationProgress: function(){},

 // Function - Will fire on animation completion.
 onAnimationComplete: function(){}
}

If for example, you wanted all charts created to be responsive, and resize when the browser
window does, the following setting can be changed:

Chart.defaults.global.responsive = true;

Now, every time we create a chart, options.responsive will be true .

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 4/20

Line Chart

Introduction

A line chart is a way of plotting data points on a line.

Often, it is used to show trend data, and the comparison of two data sets.

Example usage

var myLineChart = new Chart(ctx).Line(data, options);

Data structure

var data = {
 labels: ["January", "February", "March", "April", "May", "June", "July"],
 datasets: [
 {
 label: "My First dataset",
 fillColor: "rgba(220,220,220,0.2)",
 strokeColor: "rgba(220,220,220,1)",
 pointColor: "rgba(220,220,220,1)",
 pointStrokeColor: "#fff",
 pointHighlightFill: "#fff",
 pointHighlightStroke: "rgba(220,220,220,1)",
 data: [65, 59, 80, 81, 56, 55, 40]
 },
 {
 label: "My Second dataset",
 fillColor: "rgba(151,187,205,0.2)",
 strokeColor: "rgba(151,187,205,1)",
 pointColor: "rgba(151,187,205,1)",
 pointStrokeColor: "#fff",
 pointHighlightFill: "#fff",
 pointHighlightStroke: "rgba(151,187,205,1)",
 data: [28, 48, 40, 19, 86, 27, 90]
 }
]
};

The line chart requires an array of labels for each of the data points. This is shown on the X
axis. The data for line charts is broken up into an array of datasets. Each dataset has a colour
for the fill, a colour for the line and colours for the points and strokes of the points. These
colours are strings just like CSS. You can use RGBA, RGB, HEX or HSL notation.

The label key on each dataset is optional, and can be used when generating a scale for the

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 5/20

chart.

Chart options

These are the customisation options specific to Line charts. These options are merged with the
global chart configuration options, and form the options of the chart.

{

 ///Boolean - Whether grid lines are shown across the chart
 scaleShowGridLines : true,

 //String - Colour of the grid lines
 scaleGridLineColor : "rgba(0,0,0,.05)",

 //Number - Width of the grid lines
 scaleGridLineWidth : 1,

 //Boolean - Whether to show horizontal lines (except X axis)
 scaleShowHorizontalLines: true,

 //Boolean - Whether to show vertical lines (except Y axis)
 scaleShowVerticalLines: true,

 //Boolean - Whether the line is curved between points
 bezierCurve : true,

 //Number - Tension of the bezier curve between points
 bezierCurveTension : 0.4,

 //Boolean - Whether to show a dot for each point
 pointDot : true,

 //Number - Radius of each point dot in pixels
 pointDotRadius : 4,

 //Number - Pixel width of point dot stroke
 pointDotStrokeWidth : 1,

 //Number - amount extra to add to the radius to cater for hit detection outside the drawn point
 pointHitDetectionRadius : 20,

 //Boolean - Whether to show a stroke for datasets
 datasetStroke : true,

 //Number - Pixel width of dataset stroke
 datasetStrokeWidth : 2,

 //Boolean - Whether to fill the dataset with a colour
 datasetFill : true,

 //String - A legend template
 legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"background-color:<%=datasets[i].strokeColor%>\"><%if(datasets[i].label){%><%=datasets[i].label%><%}%><%}%>"

};

You can override these for your Chart instance by passing a second argument into the
Line method as an object with the keys you want to override.

For example, we could have a line chart without bezier curves between points by doing the
following:

new Chart(ctx).Line(data, {
 bezierCurve: false
});
// This will create a chart with all of the default options, merged from the global config,
// and the Line chart defaults, but this particular instance will have `bezierCurve` set to false.

We can also change these defaults values for each Line type that is created, this object is
available at Chart.defaults.Line .

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 6/20

Prototype methods

.getPointsAtEvent(event)

Calling getPointsAtEvent(event) on your Chart instance passing an argument of an event,
or jQuery event, will return the point elements that are at that the same position of that event.

canvas.onclick = function(evt){
 var activePoints = myLineChart.getPointsAtEvent(evt);
 // => activePoints is an array of points on the canvas that are at the same position as the click event.
};

This functionality may be useful for implementing DOM based tooltips, or triggering custom
behaviour in your application.

.update()

Calling update() on your Chart instance will re-render the chart with any updated values,
allowing you to edit the value of multiple existing points, then render those in one animated
render loop.

myLineChart.datasets[0].points[2].value = 50;
// Would update the first dataset's value of 'March' to be 50
myLineChart.update();
// Calling update now animates the position of March from 90 to 50.

.addData(valuesArray, label)

Calling addData(valuesArray, label) on your Chart instance passing an array of values
for each dataset, along with a label for those points.

// The values array passed into addData should be one for each dataset in the chart
myLineChart.addData([40, 60], "August");
// This new data will now animate at the end of the chart.

.removeData()

Calling removeData() on your Chart instance will remove the first value for all datasets on
the chart.

myLineChart.removeData();
// The chart will remove the first point and animate other points into place

Bar Chart

Introduction

A bar chart is a way of showing data as bars.

It is sometimes used to show trend data, and the comparison of multiple data sets side by side.

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 7/20

Example usage

var myBarChart = new Chart(ctx).Bar(data, options);

Data structure

var data = {
 labels: ["January", "February", "March", "April", "May", "June", "July"],
 datasets: [
 {
 label: "My First dataset",
 fillColor: "rgba(220,220,220,0.5)",
 strokeColor: "rgba(220,220,220,0.8)",
 highlightFill: "rgba(220,220,220,0.75)",
 highlightStroke: "rgba(220,220,220,1)",
 data: [65, 59, 80, 81, 56, 55, 40]
 },
 {
 label: "My Second dataset",
 fillColor: "rgba(151,187,205,0.5)",
 strokeColor: "rgba(151,187,205,0.8)",
 highlightFill: "rgba(151,187,205,0.75)",
 highlightStroke: "rgba(151,187,205,1)",
 data: [28, 48, 40, 19, 86, 27, 90]
 }
]
};

The bar chart has the a very similar data structure to the line chart, and has an array of
datasets, each with colours and an array of data. Again, colours are in CSS format. We have an
array of labels too for display. In the example, we are showing the same data as the previous
line chart example.

The label key on each dataset is optional, and can be used when generating a scale for the
chart.

Chart Options

These are the customisation options specific to Bar charts. These options are merged with the
global chart configuration options, and form the options of the chart.

{
 //Boolean - Whether the scale should start at zero, or an order of magnitude down from the lowest value
 scaleBeginAtZero : true,

 //Boolean - Whether grid lines are shown across the chart
 scaleShowGridLines : true,

 //String - Colour of the grid lines

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 8/20

 scaleGridLineColor : "rgba(0,0,0,.05)",

 //Number - Width of the grid lines
 scaleGridLineWidth : 1,

 //Boolean - Whether to show horizontal lines (except X axis)
 scaleShowHorizontalLines: true,

 //Boolean - Whether to show vertical lines (except Y axis)
 scaleShowVerticalLines: true,

 //Boolean - If there is a stroke on each bar
 barShowStroke : true,

 //Number - Pixel width of the bar stroke
 barStrokeWidth : 2,

 //Number - Spacing between each of the X value sets
 barValueSpacing : 5,

 //Number - Spacing between data sets within X values
 barDatasetSpacing : 1,

 //String - A legend template
 legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"background-color:<%=datasets[i].fillColor%>\"><%if(datasets[i].label){%><%=datasets[i].label%><%}%><%}%>"

}

You can override these for your Chart instance by passing a second argument into the
Bar method as an object with the keys you want to override.

For example, we could have a bar chart without a stroke on each bar by doing the following:

new Chart(ctx).Bar(data, {
 barShowStroke: false
});
// This will create a chart with all of the default options, merged from the global config,
// and the Bar chart defaults but this particular instance will have `barShowStroke` set to false.

We can also change these defaults values for each Bar type that is created, this object is
available at Chart.defaults.Bar .

Prototype methods

.getBarsAtEvent(event)

Calling getBarsAtEvent(event) on your Chart instance passing an argument of an event, or
jQuery event, will return the bar elements that are at that the same position of that event.

canvas.onclick = function(evt){
 var activeBars = myBarChart.getBarsAtEvent(evt);
 // => activeBars is an array of bars on the canvas that are at the same position as the click event.
};

This functionality may be useful for implementing DOM based tooltips, or triggering custom
behaviour in your application.

.update()

Calling update() on your Chart instance will re-render the chart with any updated values,
allowing you to edit the value of multiple existing points, then render those in one animated
render loop.

myBarChart.datasets[0].bars[2].value = 50;
// Would update the first dataset's value of 'March' to be 50
myBarChart.update();
// Calling update now animates the position of March from 90 to 50.

.addData(valuesArray, label)

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 9/20

Calling addData(valuesArray, label) on your Chart instance passing an array of values
for each dataset, along with a label for those bars.

// The values array passed into addData should be one for each dataset in the chart
myBarChart.addData([40, 60], "August");
// The new data will now animate at the end of the chart.

.removeData()

Calling removeData() on your Chart instance will remove the first value for all datasets on
the chart.

myBarChart.removeData();
// The chart will now animate and remove the first bar

Radar Chart

Introduction

A radar chart is a way of showing multiple data points and the variation between them.

They are often useful for comparing the points of two or more different data sets.

Example usage

var myRadarChart = new Chart(ctx).Radar(data, options);

Data structure

var data = {
 labels: ["Eating", "Drinking", "Sleeping", "Designing", "Coding", "Cycling", "Running"
 datasets: [
 {
 label: "My First dataset",
 fillColor: "rgba(220,220,220,0.2)",
 strokeColor: "rgba(220,220,220,1)",
 pointColor: "rgba(220,220,220,1)",
 pointStrokeColor: "#fff",
 pointHighlightFill: "#fff",
 pointHighlightStroke: "rgba(220,220,220,1)",
 data: [65, 59, 90, 81, 56, 55, 40]
 },

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 10/20

 {
 label: "My Second dataset",
 fillColor: "rgba(151,187,205,0.2)",
 strokeColor: "rgba(151,187,205,1)",
 pointColor: "rgba(151,187,205,1)",
 pointStrokeColor: "#fff",
 pointHighlightFill: "#fff",
 pointHighlightStroke: "rgba(151,187,205,1)",
 data: [28, 48, 40, 19, 96, 27, 100]
 }
]
};

For a radar chart, to provide context of what each point means, we include an array of strings
that show around each point in the chart. For the radar chart data, we have an array of
datasets. Each of these is an object, with a fill colour, a stroke colour, a colour for the fill of each
point, and a colour for the stroke of each point. We also have an array of data values.

The label key on each dataset is optional, and can be used when generating a scale for the
chart.

Chart options

These are the customisation options specific to Radar charts. These options are merged with
the global chart configuration options, and form the options of the chart.

{
 //Boolean - Whether to show lines for each scale point
 scaleShowLine : true,

 //Boolean - Whether we show the angle lines out of the radar
 angleShowLineOut : true,

 //Boolean - Whether to show labels on the scale
 scaleShowLabels : false,

 // Boolean - Whether the scale should begin at zero
 scaleBeginAtZero : true,

 //String - Colour of the angle line
 angleLineColor : "rgba(0,0,0,.1)",

 //Number - Pixel width of the angle line
 angleLineWidth : 1,

 //String - Point label font declaration
 pointLabelFontFamily : "'Arial'",

 //String - Point label font weight
 pointLabelFontStyle : "normal",

 //Number - Point label font size in pixels
 pointLabelFontSize : 10,

 //String - Point label font colour
 pointLabelFontColor : "#666",

 //Boolean - Whether to show a dot for each point
 pointDot : true,

 //Number - Radius of each point dot in pixels
 pointDotRadius : 3,

 //Number - Pixel width of point dot stroke
 pointDotStrokeWidth : 1,

 //Number - amount extra to add to the radius to cater for hit detection outside the drawn point
 pointHitDetectionRadius : 20,

 //Boolean - Whether to show a stroke for datasets
 datasetStroke : true,

 //Number - Pixel width of dataset stroke
 datasetStrokeWidth : 2,

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 11/20

 //Boolean - Whether to fill the dataset with a colour
 datasetFill : true,

 //String - A legend template
 legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"background-color:<%=datasets[i].strokeColor%>\"><%if(datasets[i].label){%><%=datasets[i].label%><%}%><%}%>"

}

You can override these for your Chart instance by passing a second argument into the
Radar method as an object with the keys you want to override.

For example, we could have a radar chart without a point for each on piece of data by doing
the following:

new Chart(ctx).Radar(data, {
 pointDot: false
});
// This will create a chart with all of the default options, merged from the global config,
// and the Bar chart defaults but this particular instance will have `pointDot` set to false.

We can also change these defaults values for each Radar type that is created, this object is
available at Chart.defaults.Radar .

Prototype methods

.getPointsAtEvent(event)

Calling getPointsAtEvent(event) on your Chart instance passing an argument of an event,
or jQuery event, will return the point elements that are at that the same position of that event.

canvas.onclick = function(evt){
 var activePoints = myRadarChart.getPointsAtEvent(evt);
 // => activePoints is an array of points on the canvas that are at the same position as the click event.
};

This functionality may be useful for implementing DOM based tooltips, or triggering custom
behaviour in your application.

.update()

Calling update() on your Chart instance will re-render the chart with any updated values,
allowing you to edit the value of multiple existing points, then render those in one animated
render loop.

myRadarChart.datasets[0].points[2].value = 50;
// Would update the first dataset's value of 'Sleeping' to be 50
myRadarChart.update();
// Calling update now animates the position of Sleeping from 90 to 50.

.addData(valuesArray, label)

Calling addData(valuesArray, label) on your Chart instance passing an array of values
for each dataset, along with a label for those points.

// The values array passed into addData should be one for each dataset in the chart
myRadarChart.addData([40, 60], "Dancing");
// The new data will now animate at the end of the chart.

.removeData()

Calling removeData() on your Chart instance will remove the first value for all datasets on
the chart.

myRadarChart.removeData();
// Other points will now animate to their correct positions.

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 12/20

Polar Area Chart

Introduction

Polar area charts are similar to pie charts, but each segment has the same angle - the radius of
the segment differs depending on the value.

This type of chart is often useful when we want to show a comparison data similar to a pie
chart, but also show a scale of values for context.

Example usage

new Chart(ctx).PolarArea(data, options);

Data structure

var data = [
 {
 value: 300,
 color:"#F7464A",
 highlight: "#FF5A5E",
 label: "Red"
 },
 {
 value: 50,
 color: "#46BFBD",
 highlight: "#5AD3D1",
 label: "Green"
 },
 {
 value: 100,
 color: "#FDB45C",
 highlight: "#FFC870",
 label: "Yellow"
 },
 {
 value: 40,
 color: "#949FB1",
 highlight: "#A8B3C5",
 label: "Grey"
 },
 {
 value: 120,
 color: "#4D5360",
 highlight: "#616774",
 label: "Dark Grey"

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 13/20

 }

];

As you can see, for the chart data you pass in an array of objects, with a value and a colour.
The value attribute should be a number, while the color attribute should be a string. Similar to
CSS, for this string you can use HEX notation, RGB, RGBA or HSL.

Chart options

These are the customisation options specific to Polar Area charts. These options are merged
with the global chart configuration options, and form the options of the chart.

{
 //Boolean - Show a backdrop to the scale label
 scaleShowLabelBackdrop : true,

 //String - The colour of the label backdrop
 scaleBackdropColor : "rgba(255,255,255,0.75)",

 // Boolean - Whether the scale should begin at zero
 scaleBeginAtZero : true,

 //Number - The backdrop padding above & below the label in pixels
 scaleBackdropPaddingY : 2,

 //Number - The backdrop padding to the side of the label in pixels
 scaleBackdropPaddingX : 2,

 //Boolean - Show line for each value in the scale
 scaleShowLine : true,

 //Boolean - Stroke a line around each segment in the chart
 segmentShowStroke : true,

 //String - The colour of the stroke on each segement.
 segmentStrokeColor : "#fff",

 //Number - The width of the stroke value in pixels
 segmentStrokeWidth : 2,

 //Number - Amount of animation steps
 animationSteps : 100,

 //String - Animation easing effect.
 animationEasing : "easeOutBounce",

 //Boolean - Whether to animate the rotation of the chart
 animateRotate : true,

 //Boolean - Whether to animate scaling the chart from the centre
 animateScale : false,

 //String - A legend template
 legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<segments.length; i++){%><span style=\"background-color:<%=segments[i].fillColor%>\"><%if(segments[i].label){%><%=segments[i].label%><%}%><%}%>"

}

You can override these for your Chart instance by passing a second argument into the
PolarArea method as an object with the keys you want to override.

For example, we could have a polar area chart with a black stroke on each segment like so:

new Chart(ctx).PolarArea(data, {
 segmentStrokeColor: "#000000"
});
// This will create a chart with all of the default options, merged from the global config,
// and the PolarArea chart defaults but this particular instance will have `segmentStrokeColor` set to `"#000000"`.

We can also change these defaults values for each PolarArea type that is created, this object is
available at Chart.defaults.PolarArea .

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 14/20

Prototype methods

.getSegmentsAtEvent(event)

Calling getSegmentsAtEvent(event) on your Chart instance passing an argument of an
event, or jQuery event, will return the segment elements that are at that the same position of
that event.

canvas.onclick = function(evt){
 var activePoints = myPolarAreaChart.getSegmentsAtEvent(evt);
 // => activePoints is an array of segments on the canvas that are at the same position as the click event.
};

This functionality may be useful for implementing DOM based tooltips, or triggering custom
behaviour in your application.

.update()

Calling update() on your Chart instance will re-render the chart with any updated values,
allowing you to edit the value of multiple existing points, then render those in one animated
render loop.

myPolarAreaChart.segments[1].value = 10;
// Would update the first dataset's value of 'Green' to be 10
myPolarAreaChart.update();
// Calling update now animates the position of Green from 50 to 10.

.addData(segmentData, index)

Calling addData(segmentData, index) on your Chart instance passing an object in the
same format as in the constructor. There is an option second argument of 'index', this
determines at what index the new segment should be inserted into the chart.

// An object in the same format as the original data source
myPolarAreaChart.addData({
 value: 130,
 color: "#B48EAD",
 highlight: "#C69CBE",
 label: "Purple"
});
// The new segment will now animate in.

.removeData(index)

Calling removeData(index) on your Chart instance will remove segment at that particular
index. If none is provided, it will default to the last segment.

myPolarAreaChart.removeData();
// Other segments will update to fill the empty space left.

Pie & Doughnut Charts

Introduction

Pie and doughnut charts are probably the most commonly used chart there are. They are
divided into segments, the arc of each segment shows the proportional value of each piece of
data.

They are excellent at showing the relational proportions between data.

Pie and doughnut charts are effectively the same class in Chart.js, but have one different
default value - their percentageInnerCutout . This equates what percentage of the inner
should be cut out. This defaults to 0 for pie charts, and 50 for doughnuts.

They are also registered under two aliases in the Chart core. Other than their different

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 15/20

default value, and different alias, they are exactly the same.

Example usage

// For a pie chart
var myPieChart = new Chart(ctx[0]).Pie(data,options);

// And for a doughnut chart
var myDoughnutChart = new Chart(ctx[1]).Doughnut(data,options);

Data structure

var data = [
 {
 value: 300,
 color:"#F7464A",
 highlight: "#FF5A5E",
 label: "Red"
 },
 {
 value: 50,
 color: "#46BFBD",
 highlight: "#5AD3D1",
 label: "Green"
 },
 {
 value: 100,
 color: "#FDB45C",
 highlight: "#FFC870",
 label: "Yellow"
 }
]

For a pie chart, you must pass in an array of objects with a value and a color property. The
value attribute should be a number, Chart.js will total all of the numbers and calculate the
relative proportion of each. The color attribute should be a string. Similar to CSS, for this string
you can use HEX notation, RGB, RGBA or HSL.

Chart options

These are the customisation options specific to Pie & Doughnut charts. These options are
merged with the global chart configuration options, and form the options of the chart.

{
 //Boolean - Whether we should show a stroke on each segment
 segmentShowStroke : true,

 //String - The colour of each segment stroke
 segmentStrokeColor : "#fff",

 //Number - The width of each segment stroke
 segmentStrokeWidth : 2,

 //Number - The percentage of the chart that we cut out of the middle
 percentageInnerCutout : 50, // This is 0 for Pie charts

 //Number - Amount of animation steps
 animationSteps : 100,

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 16/20

 //String - Animation easing effect
 animationEasing : "easeOutBounce",

 //Boolean - Whether we animate the rotation of the Doughnut
 animateRotate : true,

 //Boolean - Whether we animate scaling the Doughnut from the centre
 animateScale : false,

 //String - A legend template
 legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<segments.length; i++){%><span style=\"background-color:<%=segments[i].fillColor%>\"><%if(segments[i].label){%><%=segments[i].label%><%}%><%}%>"

}

You can override these for your Chart instance by passing a second argument into the
Doughnut method as an object with the keys you want to override.

For example, we could have a doughnut chart that animates by scaling out from the centre like
so:

new Chart(ctx).Doughnut(data, {
 animateScale: true
});
// This will create a chart with all of the default options, merged from the global config,
// and the Doughnut chart defaults but this particular instance will have `animateScale` set to `true`.

We can also change these default values for each Doughnut type that is created, this object is
available at Chart.defaults.Doughnut . Pie charts also have a clone of these defaults
available to change at Chart.defaults.Pie , with the only difference being
percentageInnerCutout being set to 0.

Prototype methods

.getSegmentsAtEvent(event)

Calling getSegmentsAtEvent(event) on your Chart instance passing an argument of an
event, or jQuery event, will return the segment elements that are at the same position of that
event.

canvas.onclick = function(evt){
 var activePoints = myDoughnutChart.getSegmentsAtEvent(evt);
 // => activePoints is an array of segments on the canvas that are at the same position as the click event.
};

This functionality may be useful for implementing DOM based tooltips, or triggering custom
behaviour in your application.

.update()

Calling update() on your Chart instance will re-render the chart with any updated values,
allowing you to edit the value of multiple existing points, then render those in one animated
render loop.

myDoughnutChart.segments[1].value = 10;
// Would update the first dataset's value of 'Green' to be 10
myDoughnutChart.update();
// Calling update now animates the circumference of the segment 'Green' from 50 to 10.
// and transitions other segment widths

.addData(segmentData, index)

Calling addData(segmentData, index) on your Chart instance passing an object in the
same format as in the constructor. There is an optional second argument of 'index', this
determines at what index the new segment should be inserted into the chart.

// An object in the same format as the original data source
myDoughnutChart.addData({
 value: 130,

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 17/20

 color: "#B48EAD",
 highlight: "#C69CBE",
 label: "Purple"
});
// The new segment will now animate in.

.removeData(index)

Calling removeData(index) on your Chart instance will remove segment at that particular
index. If none is provided, it will default to the last segment.

myDoughnutChart.removeData();
// Other segments will update to fill the empty space left.

Advanced usage

Prototype methods

For each chart, there are a set of global prototype methods on the shared ChartType which
you may find useful. These are available on all charts created with Chart.js, but for the
examples, let's use a line chart we've made.

// For example:
var myLineChart = new Chart(ctx).Line(data);

.clear()

Will clear the chart canvas. Used extensively internally between animation frames, but you
might find it useful.

// Will clear the canvas that myLineChart is drawn on
myLineChart.clear();
// => returns 'this' for chainability

.stop()

Use this to stop any current animation loop. This will pause the chart during any current
animation frame. Call .render() to re-animate.

// Stops the charts animation loop at its current frame
myLineChart.stop();
// => returns 'this' for chainability

.resize()

Use this to manually resize the canvas element. This is run each time the browser is resized,
but you can call this method manually if you change the size of the canvas nodes container
element.

// Resizes & redraws to fill its container element
myLineChart.resize();
// => returns 'this' for chainability

.destroy()

Use this to destroy any chart instances that are created. This will clean up any references
stored to the chart object within Chart.js, along with any associated event listeners attached by
Chart.js.

// Destroys a specific chart instance
myLineChart.destroy();

.toBase64Image()

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 18/20

This returns a base 64 encoded string of the chart in it's current state.

myLineChart.toBase64Image();
// => returns png data url of the image on the canvas

.generateLegend()

Returns an HTML string of a legend for that chart. The template for this legend is at
legendTemplate in the chart options.

myLineChart.generateLegend();
// => returns HTML string of a legend for this chart

External Tooltips

You can enable custom tooltips in the global or chart configuration like so:

var myPieChart = new Chart(ctx).Pie(data, {
 customTooltips: function(tooltip) {

 // tooltip will be false if tooltip is not visible or should be hidden
 if (!tooltip) {
 return;
 }

 // Otherwise, tooltip will be an object with all tooltip properties like:

 // tooltip.caretHeight
 // tooltip.caretPadding
 // tooltip.chart
 // tooltip.cornerRadius
 // tooltip.fillColor
 // tooltip.font...
 // tooltip.text
 // tooltip.x
 // tooltip.y
 // etc...

 };
});

See files sample/pie-customTooltips.html and sample/line-customTooltips.html for
examples on how to get started.

Writing new chart types

Chart.js 1.0 has been rewritten to provide a platform for developers to create their own custom
chart types, and be able to share and utilise them through the Chart.js API.

The format is relatively simple, there are a set of utility helper methods under
Chart.helpers , including things such as looping over collections, requesting animation

frames, and easing equations.

On top of this, there are also some simple base classes of Chart elements, these all extend
from Chart.Element , and include things such as points, bars and scales.

Chart.Type.extend({
 // Passing in a name registers this chart in the Chart namespace
 name: "Scatter",
 // Providing a defaults will also register the deafults in the chart namespace
 defaults : {
 options: "Here",
 available: "at this.options"
 },
 // Initialize is fired when the chart is initialized - Data is passed in as a parameter
 // Config is automatically merged by the core of Chart.js, and is available at this.options
 initialize: function(data){
 this.chart.ctx // The drawing context for this chart
 this.chart.canvas // the canvas node for this chart
 },
 // Used to draw something on the canvas

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 19/20

 draw: function() {
 }
});

// Now we can create a new instance of our chart, using the Chart.js API
new Chart(ctx).Scatter(data);
// initialize is now run

Extending existing chart types

We can also extend existing chart types, and expose them to the API in the same way. Let's say
for example, we might want to run some more code when we initialize every Line chart.

// Notice now we're extending the particular Line chart type, rather than the base class.
Chart.types.Line.extend({
 // Passing in a name registers this chart in the Chart namespace in the same way
 name: "LineAlt",
 initialize: function(data){
 console.log('My Line chart extension');
 Chart.types.Line.prototype.initialize.apply(this, arguments);
 }
});

// Creates a line chart in the same way
new Chart(ctx).LineAlt(data);
// but this logs 'My Line chart extension' in the console.

Community extensions

Stacked Bar Chart by @Regaddi

Error bars (bar and line charts) by @CAYdenberg

Creating custom builds

Chart.js uses gulp to build the library into a single JavaScript file. We can use this same build
script with custom parameters in order to build a custom version.

Firstly, we need to ensure development dependencies are installed. With node and npm
installed, after cloning the Chart.js repo to a local directory, and navigating to that directory in
the command line, we can run the following:

npm install
npm install -g gulp

This will install the local development dependencies for Chart.js, along with a CLI for the
JavaScript task runner gulp.

Now, we can run the gulp build task, and pass in a comma seperated list of types as an
argument to build a custom version of Chart.js with only specified chart types.

Here we will create a version of Chart.js with only Line, Radar and Bar charts included:

gulp build --types=Line,Radar,Bar

This will output to the /custom directory, and write two files, Chart.js, and Chart.min.js with
only those chart types included.

Notes

Browser support

https://github.com/CAYdenberg/Chart.js
https://twitter.com/Regaddi
http://gulpjs.com/
https://twitter.com/CAYdenberg
http://gulpjs.com/
https://github.com/Regaddi/Chart.StackedBar.js

13/02/2015 Chart.js | Documentation

http://www.chartjs.org/docs/ 20/20

Browser support for the canvas element is available in all modern & major mobile browsers
(caniuse.com/canvas).

For IE8 & below, I would recommend using the polyfill ExplorerCanvas - available at
https://code.google.com/p/explorercanvas/. It falls back to Internet explorer's format VML when
canvas support is not available. Example use:

<head>
 <!--[if lte IE 8]>
 <script src="excanvas.js"></script>
 <![endif]-->
</head>

Usually I would recommend feature detection to choose whether or not to load a polyfill, rather
than IE conditional comments, however in this case, VML is a Microsoft proprietary format, so it
will only work in IE.

Some important points to note in my experience using ExplorerCanvas as a fallback.

Initialise charts on load rather than DOMContentReady when using the library, as sometimes
a race condition will occur, and it will result in an error when trying to get the 2d context of a
canvas.

New VML DOM elements are being created for each animation frame and there is no
hardware acceleration. As a result animation is usually slow and jerky, with flashing text. It is
a good idea to dynamically turn off animation based on canvas support. I recommend using
the excellent Modernizr to do this.

When declaring fonts, the library explorercanvas requires the font name to be in single
quotes inside the string. For example, instead of your scaleFontFamily property being simply
"Arial", explorercanvas support, use "'Arial'" instead. Chart.js does this for default values.

Bugs & issues

Please report these on the GitHub page - at github.com/nnnick/Chart.js. If you could include a
link to a simple jsbin or similar to demonstrate the issue, that'd be really helpful.

Contributing

New contributions to the library are welcome, just a couple of guidelines:

Tabs for indentation, not spaces please.

Please ensure you're changing the individual files in /src, not the concatenated output in
the Chart.js file in the root of the repo.

Please check that your code will pass jshint code standards, gulp jshint will run this for
you.

Please keep pull requests concise, and document new functionality in the relevant .md file.

Consider whether your changes are useful for all users, or if creating a Chart.js extension
would be more appropriate.

License

Chart.js is open source and available under the MIT license.

https://code.google.com/p/explorercanvas/
http://modernizr.com/
http://opensource.org/licenses/MIT
http://caniuse.com/canvas
http://jsbin.com/
https://github.com/nnnick/Chart.js

